
DYNAMIC BENDING OF POLYGONAL PLASTIC SLABS 

Yu. V. Nemirovskii and T. P. Romanova UDC 539.214+539.374 

The study of the dynamic behavior of plastic structures under high-intensity short-term 
loads is important for evaluating the extent of their damage in order to determine the dis- 
tances at which an explosion would not present a hazard. Such studies are also useful for 
determining the shape of products obtained from sheets formed by explosive forging. In such 
situations, the plastic strains are considerably greater in magnitude than the elastic strains. 
This makes it possible to take an ideal rigid-plastic body as an acceptable and convenient 
model. Studies of the dynamics of rigid-plastic structures currently embrace a wide range 
of problems and have been described in detail in [1-8]. As regards the bending of plates, 
many of the investigations have dealt with problems of the axisymmetric deformation of cir- 
cular and annular plates and the construction of modifications [9-16] of the approximate so- 
lution obtained by Gvozdev for a rectangular slab in accordance with the "convert!' scheme. 
This solution was obtained in [17] and was based on the assumption that the plastic-hinge 
lines are stationary. The modifications take several approaches. One approach is to use 
extreme principles and approximate integral estimates for the maximum residual deflection 
and time of motion with pressigned types of modal velocity fields [ii, 14-16]. A second 
approach has been to allow for geometric nonlinearity [9, 14] within the framework of the 
scheme in [17]. A third direction that has been taken is to allow for the possibility of 
the development of a plastic zone while assuming that the plastic hinges are stationary [Ii- 
13]. As regards polygonal plates of general form, there are no solutions of the correspond- 
ing problems in the literature - even though the importance of obtaining such solutions was 
recognized as early as 1959 [9] and an appreciable number of approximate solutions has been 
found for static behavior [18]. 

Here, we use the approach taken by A. A. Gvozdev to construct a general solution for 
the dynamic bending of simply connected polygonal slabs. The individual sides of the contour 
are either hinged or fixed. The slabs are subjected to a shock load which is uniformly dis- 
tributed over the surface. In the general case, it is assumed that the slab is at rest on an 
elastic, viscous, or viscoelastic base. 

i. We will examine a plate made of an ideal rigid-plastic material with an arbitrary 
polygonal contour. The plate is loaded by a uniform distributed dynamic load of the inten- 
sity P(t). The plate is initially at rest on a viscoelastic~base. The coefficients of elastic 
and viscous resistance of the plate material are k~ and k~. The individual sides of the con- 
tour may be hinged or fixed. In the case of loads which differ negligibly from the static 
limit loads, the scheme of motion of the plate will coincide with the scheme of static fail- 
ure [17]. The static scheme takes the form of a set of rigid elements separated by linear 
plastic hinges. Given a sufficiently high level of loads - as in the case of bending of 
beams in [2, 4, 6] or circular annular plates in [5-8] - the dynamics of the polgyonal slab 
might be accompanied by the creation, growth, and disappearance of a zone of intensive plas- 
tic deformation. In connection with this, the general scheme of deformation of a polygonal 
plate can be represented as shown in Fig. I, where I i (i = I, 2 .... ,n) are the regions of 
the rigid planar elements and Ip is the plastic zone. The equation of motion for the region 
Ip has the form 

= = kOt 2I u ' = p - - k , w - - k 2 $  , p = P t H / o H  ~ w W / H ,  �9 t/to, k l =  i0/P~ k~=k~t0/P, ( 1 , 1 )  

where  p i s  t h e  s u r f a c e  d e n s i t y  o f  t h e  p l a t e  m a t e r i a l ;  2H i s  i t s  t h i c k n e s s ;  t o i s  t h e  c h a r -  
a c t e r i s t i c  t i m e ;  t h e  d o t  d e n o t e s  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  t h e  d i m e n s i o n l e s s  t i m e  z;  
W i s  t h e  d e f l e c t i o n .  

We w i l l  exam i ne  t h e  r o t a t i o n  o f  a r i g i d  e l e m e n t  I i (AiBiCiD i )  a r o u n d  t h e  " b e a r i n g  s i d e  
AiD i ( F i g .  1 ) .  P r o c e e d i n g  on t h e  b a s i s  o f  t h e  c o n d i t i o n  o f  c o i n c i d e n c e  o f  t h e  v e r t i c a l  v e -  
l o c i t i e s  of points on the segment BiC i on the side of the regions I i and Ip, it follows that 
CiBiIIAiDi, which in turn leads to 
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Fig. 1 Fig. 2 Fig. 3 

~ t g ? ~  = 6 ~ t g ~ ;  ( 1 . 2 )  

~i + ?i-1 = ~i .  ( 1 . 3 )  

H e r e ,  ~i i s  t h e  i n t e r i o r  a n g l e  a t  t h e  v e r t e x  A i ;  A~D~ = a~; B~C~ = aibg A~F~ = a~6~; EtDi = a ~ o  
A l s o ,  i t  f o l l o w s  f r o m  t h e  e q u a l i t y  o f  t h e  s e g m e n t  CiD i f o r  t h e  e l e m e n t s  I i and  I i +  l t h a t  

aioi~~ -- ~i+1) = ai, 16/+l~OS ~i+l. ( 1 . 4 )  

The equation of motion of the trapezoid I i around the reference line AiD i will be written in 
the form 

I ' ~  = Mitg, ( I. 5) 

where T i is the moment of inertia of the trapezoid li; M i is the total moment of the external 
forces applied to the surface and the contour of element Ii; ~i is the angle of deviation of 
I i from the horizontal. Considering that the segments AiBi, BiCi, CiD i are linear plastic 
hinges with the limiting bending moment M 0 and taking into account that the bending moment 
on the line AiD i is equal to zero when it is hinged and -M 0 when it is fixed, we represent 
Eq. (1.5) in the form 

8~ tg  a ~ [4 - -  3 (6i + ~0] (i i  + kzii  + k,a 0 = 

~ [3 - -  2 (5~ + ~0] 5~ tg 2 ~iP (z) d~, c~ = H/a~, di t2Mot o (2 - -  ~O/pa~. ( 1 . 6 )  

Here, qi = 0 and 1 when the segment AiD i is fixed or hinged, respectively. The condition of 
coincidence of the vertical velocities on the segment BiC i determines the equality 

8~tg ~i~i = c~w. (1.7) 

The set of equations (i.i)-(i.4), (i.6), (1.7) constitutes the complete system of equations 
for finding the sought functions w, ~i, 6i, ~i, ~i, Xi (i = i, 2 ..... n). The analysis and 
solution of the system for an arbitrary polygon is difficult and cumbersome. Thus, for 
simplicity, we will examine regular polygons with a contour havingidentically fixed sides 
in the absence of elastic and viscous resistance. In this case, ~ = =(n--2)/n = 2~, ~ = ~i = 
~, as = 2a, ~ :  ~ =  ~]2, a ~ = ~ ,  ~ = ~ ( i  = 1,  2 . . . . .  n ) .  Then  t h e  e q u a t i o n s  d e s c r i b i n g  t h e  d y -  

n a m i c  b e h a v i o r  o f  a r e g u l a r  p o l y g o n a l  s l a b  t a k e  t h e  f o r m  

6a(4 - -  36)~ = 2p,62(3 - -  26) - -  too, ( ~ ) "  = Pc, ( 1 . 8 )  

w h e r e  p~ = pH/r; mo = t2Mot~(2--q)/prn; r = a t a n  r ; r i s  t h e  r a d i u s  o f  a c i r c l e  i n s c r i b e d  i n  t h e  
polygonal contour. The initial conditions for a are as follows: ~(0) = ~(0) = 0. 

To determine the static limit load, we need to put & = 0 in the first equation of (1.8). 
Then we determine the kinematically possible limit load from the condition 

p ] =  min p,  = m i n m J 2 6 z ( 3 - - 2 ~  = mo/2. (1.9) 
. 0 < 6 ~ 1  0 < 6 ~ 1  

Here, the plastic zone degenerates into the center of the inscribed circle, while the limit 
load in the case of hinged support coincides with the limit load for a circular plate of the 
radius r [8, 18]. The motion of a plate with a degenerate plastic region Ip will be described 
by the first equation of system (1.8) with 6 = i. 

Let p(T)~p~ ("low" loads) on the time interval 0 ~<TI (first phase). Then the plate 
will remain in the undeformed state and at rest during this period of time. 
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We integrate the second equation of system (1.8) with allowance for the conditions 

�9 j 
&(th)----ah,  6(t~)----6h: 5 ~ - - - - I ~ ( t ) - ~  5k~tk, Ih(T) = pl(s)  ds, k =  1, 2 . . . .  

Th 

(~k is a certain fixed moment of time in the interval of existence of the region Ip in non- 
degenerate form). Using this equality and eliminating ~ from system (1.8), we obtain [62(2 - 

6) (lh + 6k~k)]" = m0 = 2P~ from which 

,) 0 3 6~ (2 - 6) = [ _ p , ( ~  - t~) + 6,, (2 - 6h) ~h] (I~ + ~ ) - 1 .  ( 1 . 1 0 )  

It follows from this equation that at k = 1 

lira 6 z (2 - -  6) = 6 z (2 - -  61) = 2p~/IJ, (t~), ( 1 . 1 I  ) �9 I 

from which it is evident that 61 < 1 at pi(~i) > 2p ~ and 61~ 1 at pl(tl)~ 2p~. Thus, if the 
load is such that pi(~i) > 2pl ~ ("high" load), then the motion of the plate will begin in the 
presence of the zone Ip and will be described by system (1.8) with the initial conditions 
5 = 6 I, ~ = ~ = 0 [61 is determined from (I.ii)]. 

Since by definition the value of 5 cannot exceed unity, at a load p~ < pi(~i)~ ~pj, it 
must be assumed that the motion of the plate will begin in the absence of a plastic zone and 
will be described by the first equation of (1.8) with 6 = i. 

Let us take a closer look at the motion of the plate under the influence of the load 
depicted in Fig. 2. In this case, with allowance for the initial conditions ~(~i) = ~(~l) = 
0, 6 = i, in the second phase (~I~T~) 

(t)  = 2 A  (t)  -~  2p~ ( t  - T~), ( 1 . 1 2 )  
T 

(t)  = 2J~ (t)  - -  p0 (~ _ tl)~,  Jh (t)  = f I~ (s) a s ,  k = t ,  '2 . . . .  

~h 

The end  o f  t h i s  p h a s e  (~ = x i ) ,  c o r r e s p o n d i n g  t o  t h e  b e g i n n i n g  o f  f o r m a t i o n  o f  t h e  p l a s t i c  
zone, will be determined as follows. It follows from (i.i0) with k = 2, 6 2 = I that 

g~ (4 - 3~)= { 2pg (I~ + =~) - [ 2~; (~ - ~) + &~] ;~ (~)) (A + =~) . (1.13) 

It follows from (1.13) that at pz(~) = 2p ~ ~(~) = 0, and 6(~) < 0, while at p~(~) > 2p~, 
5(~) < I. Since 6 ~ I, then ~ begins to decrease. This corresponds to an s in the 
size of the zone Ip at the moment of time ~, satisfying the condition p~(~=) = 2p~ ~ 

The third phase of motion (~ < ~ ~.~ ~.~) occurs with a developed plastic zone and is de- 
scribed by system (1.8) with the initial conditions 6(~) = i, &(~) = &2, ~(~) = ~2. As 
a result of integration, we have [~k = a(~k)] 

(~) = (~  + 4)  ~-', ~ (0 = ~ + ~ (~  + ~)  ~-ld~, 
t~ ( 1 . 1 4 )  

~- (2 - ~) = [2p? (~ - ~,) + ~_~i (z~ + ~ )  . 

It is evident from (1.13) that at ~ > ~2 and with satisfaction of the condition F(~) < 

0 - where F(~)=ip~[l~{~)+ ~,_]--[ip~(~--~)+~]p~(t)- the plastic zone increases in size. When 
F(~) > 0, it decreases, and at the moment ~m such that F(~ m) = 0 it reaches its maximum size. 

The time ~3 at which the phase ends is determined from the condition 6(~3) = 1 (~3 > ~) 
and, in accordance with (I.14), satisfies the equation I~(~)----2p~(~-- ~2). 

The fourth phase (%~<~a)is determined by the first equation of system (1.8) with 
= i. As a result, we obtain &(t)=&~+21~--2p~(~--%~),~(~)=~ + 2J~--p~(t--t~) ~+&~(t-~). 

The end of the phase is found from the condition &(~) = 0 and is equal to ~ = ~ ~ I~(~a)/p~ 

The residual deflection at the center of the plate WI = r~ 6~d~. 

In the case of "moderate" loads p~ <p~(~)~ 2p~, the time ~: corresponds to the moment 
of stoppage of the plate, and during the period ~ ~ ~  the plate's motion is described 
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by Eqs. (1.12). The time ~2 of stoppage is determined from &(~2) = 0 and satisfies the 
equation T 2 = ~i + [I(T2)/P~. 

For a high-intensity dynamic load which develops instantaneously and then decays, the 
first and second phases of motion in the above-described structure of the solution should be 
discarded and it is assumed that T I = ~2 = 0, ~(~2) = 0, ~(~2) = 0. Here, the initial value 
5 0 = 5(0) is determined from the equality 6~(2--80) = 2p~/p1(O), p1(0)>~2p~, obtained from (I.I0) 
at ~k = 0 with the asymptote ~ § 0. For a square pulse, 6(%) = 6 0 during the entire time of 
action of the pulse, and Tm corresponds to the moment of unloading. 

2. The solution described above is not difficult to modify in order to find the corre- 
sponding solutions for plates having a coaxial polygonal hole which is free or is reinforced 
by a rigid ring. 

For plates with a free hole, characterized by the parameter 5, the corresponding solu- 
tions can be obtained if we assume that the bending moments on the lines BiC i are equal to 
zero. Then, with a fixed 5, the equation of motion will be described by the first equation 
of (1.8) with the replacement of m 0 by m0 = 12M0t~(l--N + 6)/P r3. 

For plates with a rigid ring, characterized by the parameter 5, linear plastic hinges 
and shearing forces will develop on the lines BiC i. These hinges and forces will influence 
the mutual motion of the rigid elements I i and Ip (see Fig. i). In the case of a regular 
polygonal contour, symmetry allows us to assume that the shearing forces are uniformly 
distributed over the contour of the internal hole. Taking this into account," we obtain the 
following equations of motion of the elements I D and li, respectively: w-~ k~w-~- klw = [p + 

2q/( i  - -  q)]p~, 6 s (4 - -  3 6 ) ( ~  -}- k2~ -b k~a) t a n  ~ = 2pc62 ( 3 -  26) + 1 2 q •  6 ) - - m o  t a n  ~ (c = H/a, q = Qt~/ 
O Haman ~, 92 = P/Pl,. Q is the shearing force, p and Pz are the densities of the materials of 
the plate and ring). Considering the equality of the vertical components of the velocities 
on the boundary of the plate and ring c~ = A6 tan ~ and eliminating q, we have an equation 
for the deflection w of the plate 

(w-Sk~w+k~w) [p26 ~ (4 - -  3~) - -  66 ( i - - 6 )  e] = 2pp26 (98 - -  56 ~ - 3 ) - m o p 2 t g ~ / c .  ( 2 . 1 )  

Since 6 = const, Eq. (2.1) is easily integrated with the initial conditions w(0) = w(0) = 0. 
Taking these conditions into account, we use (2.1) to find the limit load p0, above which 
the plate will begin to move. In finding the limit load, we assume that w(0) = 0:p0 = m0 • 
t a n  ~ / [26  (96 - -  562 - -  3) c].  

3. One important class of plates consists of those plates which are identically fast- 
ened over their entire contour in the case where the contour is a convex polgyon described 
around a circle of the radius r. For such plates, the linear hinges in the limiting state 
intersect at the center of the circle [18]. Since BiCiI[AiD i (Fig. 3, where BiC i is a segment 
of the straight line separating the rigid element I i and the zone Ip), then we can inscribe 
a circle of radius r I in the contour of the region Ip. Since h i = r - r I = hi- I = h = const, 
~i = N, then from the similarity AAiOD i and ABiOC i we will have r(~ i + 6 i) = h. Thus, 6 i + 

~i = 6 = h/r, and Eqs. (1.6) and (1.7) will take the form 6a(4--36)(~ ~-k2~-~ k1~)=p162(3 - 

26)--m0~ r6a=Hw. At k I = k 2 = 0, taking (i.i) into account, this system reduces to system 
(1.8). This means that the dynamic behavior of such plates will be similar to that of cor- 
responding plates with a regular polygonal contour. 

The solution proposed above can be used to solve the problem of optimizing the shape of 
a covering from the viewpoint of minimizing its damage, assuming constancy of the covered 
area, the thickness of the plate, and the method of fastening on all sides. 

For a regular n-angle plate, the limit load p~ = 6Mo(2--~)S-~n {tan [a(n--2)/2n]} -~ (S is 
the area of the plate). Since p~ decreases with an increase in n, then m,np0 = lim P0 = 6~10 x 

(2--~)~/S. It is evident from this that a circular plate of the radius ~$7~ will have the 
minimum limit load, while a triangular plate will have the maximum limit load. Since the 
residual deflection and the time of motion of the plate are inversely proportional to the 
limit load, the circular plate will be subjected to the most damage. In the class of rec- 
tangular plates with a ratio of the sides ~I, the most damage is inflicted on square 
plates (X = i), since the limit load 

p~ = 6 M  o (2 - -  0) 8 - 1  (1 + V ~ )  2 (9~) -1 ,  

and rain p~ = p~ Iv=~ = 631o (2 - -  ~) S -~.  
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4. As an example, we will examine the problem of the dynamic bending of a square plate. 
Two of the opposing sides of the plate are fixed, while the other two sides are either fixed 
(q = 0) or hinged (N = i). The plate is subjected to a load in the form of a square pulse 
of intensity Pl acting over the period of time 0~<T~<I. The general scheme of deformation 
of such a plate is depicted in Fig. 4, where 6 and ~ are quantities characterizing the dimen- 
sions of the plastic region Ip, while I i represents the rigid zones (i = I, 2). The equa- 
tions of dynamic behavior hav~ the form 

~ a ( 4  - -  3t}) ~ ,  ---- 2 p ~ =  (3 - -  26) - -  (2 - -  ~1) m / 2 ;  ( 4 . 1 )  

8 ~ ( 4  - -  3~)~2  = 2p ,6~ (3 - -  2~) - -  m;  ( 4 . 2 )  

(~11)" - -  p , ;  ( 4 . 3 )  

~&~ = ~&~ ( 4 . 4 )  

with m = 24Mo/pa a. The limit load 

Here 

p0 = m (2 - -  N)/4~. ( 4 . 5 )  

~0 = ( - - i  + V i  + 6/(2 -- q))(2 - -  0)/2. ( 4 . 6 )  

At Pl ~ P ~  ( " l o w "  l o a d s ) ,  no m o t i o n  t a k e s  p l a c e .  At P ~ < P l ~ P ~  ( " m o d e r a t e "  l o a d s ) ,  where  

p~ ---- m (2 - -  ~) / (2~) ;  ( 4 . 7 )  

~i ---- ( - - t  + ] / t  + t6/(2 - -  ~1))(2 - -  0)/4, ( 4 . 8 )  

motion will take place with 5 = 1 and ~ determined from the equation Pl = m [4 -- 3~ -- 2~2/(2 -- 
N)](2--~]) [4~2(I--~)] -I, with the degeneration of the zone I into a segment of straight line 

I (,,high ,, P " At Pl > Pl 5 loads), the plate begins to move in the presence of a developed zone Ip. 

Let us examine the "high" loads : p~ > p~. Here, in the first phase (0 ~.~ ~ I), with 
Pl = const, ~ = Sn, and ~ = 6n, we obtain the following from (4.1)-(4.4) 

oq (T) ~- p lr /~h , a 1 (T) = pl%~/2~i.i, ~2 (T) -~ plT/6n,  O: 2 (~) = piT212%, 

where  8 n i s  d e t e r m i n e d  f rom t h e  e q u a t i o n  

n = ~ [ l  / ~6 (2 - %)/(2 - 0) + ~ + <]~  (2 - 0) [a,~ (2 ~ )  ~a]-' .  

I n  t h e  s e c o n d  p h a s e  (1 < ~ - ~ % ) ,  t h e  r e g i o n .  I p  u n d e r g o e s  c o m p r e s s i o n ,  and ,  w i t h  Pl  = O, ~ = 
6 ( ~ ) ,  and $ = $ ( ~ ) ,  we o b t a i n  t h e  f o l l o w i n g  f rom (4.1)-(4.4) 
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1 

-[, 

r (~) = a~ ( t)  + Pi  S 6-~  (s) de, 
1 

where 6(~) and ~(~) are found from the equation Pl - -  mr[ ~16 (2-- 8)/(2--~)+ ~ + 8] ~ X(2--~)[32 (2-- 
8)8z] -i, ~(~)=2[l--mz(28~p0-a]. The moment of time T = Ti is determined from the condition 
6(~ i) = 1 and is equal to ~i = Pi/P~. 
( ~ . s ) ] .  

The third phase of motion (~i<~ 
tion is described by system (4.1), (4 

( ~ 0  = ~ ,  ~ (~i )  = ~ ,  ~ (~0 = ~ (~ = 1, 
by the Runge-Kutta method. The time 
&i(~2) = 0 (i = 1 ,  2 ) .  

C a l c u l a t i o n s  s h o w e d  t h a t ,  t a k i n g  
I,i(~) = p ] ~ , ,  2 ~  - -  (2 - -  ~) ( 3 - - 2 ~ )  = 0 

= [i Here, 5(~i) ~i Pi, ~i are calculated from (4.7), 

~) occurs in the absence of the zone Ip. The solu- 
.2), (4.4) with Pi = 0, 6 = I and the initial conditions 

2). System (4.1), (4.2), (4.4) is solved numerically 
at which the plate stops ~2 is found from the condition 

into account the rounding error, the relations ~(z~) = 0, 
are valid at the moment ~2. The residual deflection at 

plate W !  ---- c J 8 ('r) ~2 (T) d'n t h e  center of the 
O 

Figure 4 shows the distribution of the deflections of a plate with two hinged and two 
fixed edges subjected to the load p~ = l.Sp~* (p* = papa3/Mot~, p~* = 19.69) at the moments of time 

= i, ~i = 1.5, ~2 = 3.4 (curves 1-3). Figure 5 quantitatively compares the results of cal- 
culations for a hinged plate (dashed lines) loaded by a uniformly distributed square pulse 
with the solution from [5] (solid lines) obtained by linear prograrmning. It was assumed that 
p~ = 3p s, where p~ = piPLa/M0t 2, 2L is the length of a side of the plate, and pS = 5.716 is 
the limit load from [5]. It should be noted that for the given plate, the limit load deter- 
mined in [19] by the simplex method is 5.784, while the limit load found from (1.9) is 6. 
Figure 5 shows the deflections of the plate at the moments of time �9 = 1 (unloading) and 

= 1.3 and the residual deflections at the moments �9 = 3.3 [5] and T = 2.87 (above-derived 
formulas). It can be seen that the values are sufficiently close together, but the solution 
obtained here was considerably easier to find. It should also be noted that for a square 
pulse and a hinged square plate, the formulas obtained in the present study for residual 
deflection coincide with the formulas found in [10] on the basis of another, more complex 
solution. 

As another example, let us examine the problem of a regular triangular hinged plate, 
with the side 2a, subjected to a uniformly distributed square pulse of the intensity Pl. In 
this case, the equations of motion have the form (1.8) 8s(4--38)a----2p18~ (3- 28)- m0, (S&)" = 
Pi. The limit load p~ = mo/2. At p~<p1~2p~ ("moderate" loads), the motion of the plate 
takes place with three linear plastic hinges which coincide with the bisectors of the angles 
of the triangle. At Pi > 2P ~ ("high" loads), motion occurs with the formation of a plastic 
zone in the form of a regular triangle similar to the contour triangle. Here, in the first 

phase of motion (0 < �9 ~ I, Pi = const, 6 = 6 n = const) i(z) ----- pl~78n, r ----- pl~/28n, m (all3/3,: ~) = 
piT, w(=~3/3, T) ---pi~/2 [w(x, ~) is the deflection along the OX axis (Fig. 6) ]. The size of 
the plastic zone 6 n is found from the equation 

8~(2 - -  ~ )  ----- 2p~ 

In the second phase [ I ~ i ,  Pi= 0, 6 = 8(~)] 

T 

[z (~) = p J 8  (~),~ a (~) = cz (t) + ~ 5-1 (s) de, w (a ]/"3/3., ~) = p~ (~: - -  t /2) ,  
1 

(8.ag /3, = t )  + = + 
1 

+ - - 3 - 

where 6 ( T )  is found from 

5 2 ( 2 - -  8) = 2pOT/p~; 5 (~1) ---- 1; ~ = p,/2p~ 

in the third phase (T i < T ~ ~2, Pl = 0, 6 ---- I, ~2 being the time at which motion ends), 

596 



T 1 

w(a ]/3/3, T2) = w(a  vr3/3, T1) + 2 S ( p l - -  p~ d~,, 
T 1 

T2 

W (6na ~/3/3, ~2)= w (~ha ~r3/3,, "c,) + 26nS (pl -- p~ dT. 
T 1 

Figure 6 shows the distribution of the deflections at the moments of time T = I, ~l = 
1.3, ~2 = 2.6 (curves 1-3) in section along the bisectors of the angle at Pl =2.6P~~ (P~ ~ 18, 

�9 p~ = p19 a~ tan 3 q~/Mot~). 
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